jump to navigation

Data Mining Agustus 1, 2007

Posted by haniif in My Thesis.
Tags: ,
trackback

Secara sederhana data mining adalah suatu proses untuk menemukan interesting knowledge dari sejumlah data yang disimpan dalam basis data atau media penyimpanan data lainnya. Dengan melakukan data mining terhadap sekumpulan data, akan didapatkan suatu interesting pattern yang dapat disimpan sebagai knowledge baru. Pattern yang didapat akan digunakan untuk melakukan evaluasi terhadap data-data tersebut untuk selanjutnya akan didapatkan informasi
[1].

Tehnik dalam Data Mining datang dari Basis Data, Machine Learning, dan Statistik. Elemen-elemen kunci untuk Data Mining ini telah dibuat dalam beberapa tahun terakhir. Secara umum tugas dari Data Mining dapat dibagi ke dalam dua tipe, yaitu Predictive Data Mining dan Knowledge Discovery / Description Data Mining.

Predictive Data Mining adalah tipe data mining untuk memprediksi nilai suatu variabel di masa yang akan datang atau nilai variabel lain berdasarkan beberapa variabel yang saat ini telah diketahui nilainya. Yang termasuk dalam tipe ini antara lain: klasifikasi, regresi, dan deteksi deviasi.

Knowledge Discovery / Description Data Mining yang juga sering disebut sebagai pencarian pola (pattern discovery) adalah tipe data mining yang digunakan untuk mendapatkan pola yang tersembunyi dalam data dan bisa dipahami oleh manusia, biasanya ditampilkan dalam bentuk kalimat yang mudah dimengerti, misalnya “Jika seseorang membeli produk A maka juga membeli produk B”. Meskipun pola ini bisa ditemukan oleh manusia tanpa bantuan komputer – khususnya jika jumlah variabel dan datanya kecil – namun jika jumlah variabel puluhan bahkan ratusan dan jumlah data ribuan bahkan jutaan maka diperlukan waktu bertahun-tahun untuk mendapatkan pola-pola tersebut. Disinilah peran teknologi informasi dengan dukungan sistem data mining membantu dalam penyelesaian permasalahan ini. Yang termasuk tipe ini adalah: klusterisasi, aturan asosiasi, dan penemuan pola sekuensial.

Dengan data mining perusahaan bisa mendapatkan informasi penting dan profitable tentang klien atau pelanggan yang pada akhirnya bisa meningkatkan keuntungan perusahaan atau mengurangi kerugian. Kegunaan informasi pada data mining seperti diatas sering disebut sebagai Market Basket Analysis. Dalam jangka panjang, data mining dapat membuat sebuah perusahaan lebih kompetitif.

Ada beberapa model data mining berdasarkan tugas atau tujuan yang harus dihasilkan. Model-model tersebut antara lain: klasifikasi, klusterisasi, assosiasi, pencarian sequence, regresi, dan deteksi deviasi.


Komentar»

No comments yet — be the first.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: